Switched systems are known to exhibit subtle (in)stability behaviors requiring system designers to carefully analyze the stability of closed-loop systems that arise from their proposed switching control laws. This paper presents a formal approach for verifying switched system stability that blends classical ideas from the controls and verification literature using differential dynamic logic (dL), a logic for deductive verification of hybrid systems. From controls, we use standard stability notions for various classes of switching mechanisms and their corresponding Lyapunov function-based analysis techniques. From verification, we use dL's ability to verify quantified properties of hybrid systems and dL models of switched systems as looping hybrid programs whose stability can be formally specified and proven by finding appropriate loop invariants, i.e., properties that are preserved across each loop iteration. This blend of ideas enables a trustworthy implementation of switched system stability verification in the KeYmaera X prover based on dL. For standard classes of switching mechanisms, the implementation provides fully automated stability proofs, including searching for suitable Lyapunov functions. Moreover, the generality of the deductive approach also enables verification of switching control laws that require non-standard stability arguments through the design of loop invariants that suitably express specific intuitions behind those control laws. This flexibility is demonstrated on three case studies: a model for longitudinal flight control by Branicky, an automatic cruise controller, and Brockett's nonholonomic integrator.


翻译:切换系统已知显示细微( 内存) 的稳定性行为, 要求系统设计者仔细分析从他们提议的调换控制法中产生的闭环系统的稳定性。 本文展示了一种正式的系统稳定性核查方法, 将不同动态逻辑( dL) 的经典观点与控制与核查文献中的经典观点混在一起, 这是混合系统推算核查的逻辑( dL) 的逻辑。 我们从控制中, 对不同类别的切换机制及其相应的 Lyapunov 函数分析技术使用标准稳定性概念。 从核查中, 我们使用 dL 的能力来核查混合系统和转接系统DL 模型的量化性能, 作为循环混合程序, 其稳定性可以正式指定, 并通过找到适当的反向变化的混合程序, 即每个循环循环循环中保存的属性。 这种混合概念的组合使得可以对基于 dL的 Keyymara X prur 校验系统进行值得信赖的系统稳定性核查。 对于标准的转换机制, 实施完全自动的模型证明, 包括搜索适当的 Lyapunov 函数功能。 此外, 的推法还使得可以核查在不规则的变换, 这种不规则的变换, 的变的变动的变的变式的变的变的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式是, 。

0
下载
关闭预览

相关内容

【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
50+阅读 · 2020年8月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2018年1月15日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2021年10月12日
Arxiv
5+阅读 · 2021年1月7日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2018年1月15日
Arxiv
4+阅读 · 2017年12月25日
Top
微信扫码咨询专知VIP会员