We present a compatible finite element discretisation for the vertical slice compressible Euler equations, at next-to-lowest order (i.e., the pressure space is bilinear discontinuous functions. The equations are numerically integrated in time using a fully implicit timestepping scheme which is solved using monolithic GMRES preconditioned by a linesmoother. This is implemented using Firedrake, and the additive Schwarz preconditioner framework of PETSc. We demonstrate the robustness of the scheme using a standard set of testcases that may be compared with other approaches.
翻译:我们为垂直切片压缩 Euler 方程式按次至次低顺序(即压力空间是双线不连续函数。这些方程式使用完全隐含的定时步骤办法在时间上进行了数字整合,这个办法由线状模型所先决条件的单一式GMRES解决。这个办法使用Firedrake和PETSC的添加式Schwarz 先决条件框架来实施。我们用一套标准试验箱来证明这个办法的稳健性,这些试验箱可以与其他办法作比较。