In this paper, we are concerned with the detection of progressive dynamic saliency from video sequences. More precisely, we are interested in saliency related to motion and likely to appear progressively over time. It can be relevant to trigger alarms, to dedicate additional processing or to detect specific events. Trajectories represent the best way to support progressive dynamic saliency detection. Accordingly, we will talk about trajectory saliency. A trajectory will be qualified as salient if it deviates from normal trajectories that share a common motion pattern related to a given context. First, we need a compact while discriminative representation of trajectories. We adopt a (nearly) unsupervised learning-based approach. The latent code estimated by a recurrent auto-encoder provides the desired representation. In addition, we enforce consistency for normal (similar) trajectories through the auto-encoder loss function. The distance of the trajectory code to a prototype code accounting for normality is the means to detect salient trajectories. We validate our trajectory saliency detection method on synthetic and real trajectory datasets, and highlight the contributions of its different components. We show that our method outperforms existing methods on several scenarios drawn from the publicly available dataset of pedestrian trajectories acquired in a railway station (Alahi 2014).


翻译:在本文中,我们关注从视频序列中探测进步动态显著性的问题。 更准确地说, 我们感兴趣的是运动的显著性, 并可能逐渐出现。 可能与触发警报、 专门增加处理或探测特定事件有关。 轨迹是支持进步动态显著性检测的最佳方法。 因此, 我们将谈论轨迹显著性。 如果轨迹偏离与特定环境有共同运动模式的正常轨迹, 则会被定性为显著性。 首先, 我们需要在对轨迹进行区分时, 使用一个缩略图。 我们采用了一种( 近距离的) 不受监督的基于学习的方法。 由经常自动编码估计的潜在代码提供了理想的代号。 此外, 我们通过自动编码损失函数功能来对正常( 相似的) 轨迹轨迹进行一致性。 轨迹代码与正常性原型代码会计的距离是检测显著轨迹的方法。 我们验证了我们在合成和真实轨迹数据数据集中的轨迹显著性检测方法, 并突出其不同版本中的现有数据格式。 我们展示了我们所获取的火车轨迹图方法。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
最新《深度学习视频异常检测》2020综述论文,21页pdf
专知会员服务
81+阅读 · 2020年9月30日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
125+阅读 · 2019年7月15日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
VIP会员
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
125+阅读 · 2019年7月15日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员