In this paper, we are concerned with the detection of progressive dynamic saliency from video sequences. More precisely, we are interested in saliency related to motion and likely to appear progressively over time. It can be relevant to trigger alarms, to dedicate additional processing or to detect specific events. Trajectories represent the best way to support progressive dynamic saliency detection. Accordingly, we will talk about trajectory saliency. A trajectory will be qualified as salient if it deviates from normal trajectories that share a common motion pattern related to a given context. First, we need a compact while discriminative representation of trajectories. We adopt a (nearly) unsupervised learning-based approach. The latent code estimated by a recurrent auto-encoder provides the desired representation. In addition, we enforce consistency for normal (similar) trajectories through the auto-encoder loss function. The distance of the trajectory code to a prototype code accounting for normality is the means to detect salient trajectories. We validate our trajectory saliency detection method on synthetic and real trajectory datasets, and highlight the contributions of its different components. We show that our method outperforms existing methods on several scenarios drawn from the publicly available dataset of pedestrian trajectories acquired in a railway station (Alahi 2014).
翻译:在本文中,我们关注从视频序列中探测进步动态显著性的问题。 更准确地说, 我们感兴趣的是运动的显著性, 并可能逐渐出现。 可能与触发警报、 专门增加处理或探测特定事件有关。 轨迹是支持进步动态显著性检测的最佳方法。 因此, 我们将谈论轨迹显著性。 如果轨迹偏离与特定环境有共同运动模式的正常轨迹, 则会被定性为显著性。 首先, 我们需要在对轨迹进行区分时, 使用一个缩略图。 我们采用了一种( 近距离的) 不受监督的基于学习的方法。 由经常自动编码估计的潜在代码提供了理想的代号。 此外, 我们通过自动编码损失函数功能来对正常( 相似的) 轨迹轨迹进行一致性。 轨迹代码与正常性原型代码会计的距离是检测显著轨迹的方法。 我们验证了我们在合成和真实轨迹数据数据集中的轨迹显著性检测方法, 并突出其不同版本中的现有数据格式。 我们展示了我们所获取的火车轨迹图方法。