Uncertainty estimation for unlabeled data is crucial to active learning. With a deep neural network employed as the backbone model, the data selection process is highly challenging due to the potential over-confidence of the model inference. Existing methods resort to special learning fashions (e.g. adversarial) or auxiliary models to address this challenge. This tends to result in complex and inefficient pipelines, which would render the methods impractical. In this work, we propose a novel algorithm that leverages noise stability to estimate data uncertainty in a Single-Training Multi-Inference fashion. The key idea is to measure the output derivation from the original observation when the model parameters are randomly perturbed by noise. We provide theoretical analyses by leveraging the small Gaussian noise theory and demonstrate that our method favors a subset with large and diverse gradients. Despite its simplicity, our method outperforms the state-of-the-art active learning baselines in various tasks, including computer vision, natural language processing, and structural data analysis.
翻译:对未贴标签的数据的不确定性估计对于积极学习至关重要。 使用深层神经网络作为主力模型,数据选择过程由于模型推断可能过于自信而具有极大的挑战性。 现有方法采用特殊的学习方式(例如对抗性)或辅助模型来应对这一挑战。 这往往导致管道复杂且效率低下,从而使方法不切实际。 在这项工作中,我们提出一种新的算法,利用噪音稳定性来利用单一培训多参数来估计数据不确定性。 关键的想法是测量模型参数被噪音随机扰动时从原始观测得出的输出。 我们通过利用小型高斯噪音理论提供理论分析,并表明我们的方法偏向于一个具有巨大和不同梯度的子。 尽管方法简单,但我们的方法在各种任务中,包括在计算机视觉、自然语言处理和结构数据分析中,超越了最先进的积极学习基线。