This dissertation reports some first steps towards a compositional account of active inference and the Bayesian brain. Specifically, we use the tools of contemporary applied category theory to supply functorial semantics for approximate inference. To do so, we define on the `syntactic' side the new notion of Bayesian lens and show that Bayesian updating composes according to the compositional lens pattern. Using Bayesian lenses, and inspired by compositional game theory, we define categories of statistical games and use them to classify various problems of statistical inference. On the `semantic' side, we present a new formalization of general open dynamical systems (particularly: deterministic, stochastic, and random; and discrete- and continuous-time) as certain coalgebras of polynomial functors, which we show collect into monoidal opindexed categories (or, alternatively, into algebras for multicategories of generalized polynomial functors). We use these opindexed categories to define monoidal bicategories of cilia: dynamical systems which control lenses, and which supply the target for our functorial semantics. Accordingly, we construct functors which explain the bidirectional compositional structure of predictive coding neural circuits under the free energy principle, thereby giving a formal mathematical underpinning to the bidirectionality observed in the cortex. Along the way, we explain how to compose rate-coded neural circuits using an algebra for a multicategory of linear circuit diagrams, showing subsequently that this is subsumed by lenses and polynomial functors. Because category theory is unfamiliar to many computational neuroscientists and cognitive scientists, we have made a particular effort to give clear, detailed, and approachable expositions of all the category-theoretic structures and results of which we make use.
翻译:这种分解报告了向主动推断和贝叶斯大脑的构成解析的一些初步步骤。 具体地说, 我们使用当代应用分类理论工具来为近似推算提供直流语义。 为此, 我们在“ 合成” 侧定义了贝叶斯镜的新概念, 并显示贝叶斯的更新根据组成透镜模式组成。 使用贝叶斯镜, 并受组成游戏理论的启发, 我们定义了统计游戏的分类, 并用它们来分类统计推断的各种问题。 在“ 确定” 侧, 我们展示了一种新的直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系。