This dissertation reports some first steps towards a compositional account of active inference and the Bayesian brain. Specifically, we use the tools of contemporary applied category theory to supply functorial semantics for approximate inference. To do so, we define on the `syntactic' side the new notion of Bayesian lens and show that Bayesian updating composes according to the compositional lens pattern. Using Bayesian lenses, and inspired by compositional game theory, we define categories of statistical games and use them to classify various problems of statistical inference. On the `semantic' side, we present a new formalization of general open dynamical systems (particularly: deterministic, stochastic, and random; and discrete- and continuous-time) as certain coalgebras of polynomial functors, which we show collect into monoidal opindexed categories (or, alternatively, into algebras for multicategories of generalized polynomial functors). We use these opindexed categories to define monoidal bicategories of cilia: dynamical systems which control lenses, and which supply the target for our functorial semantics. Accordingly, we construct functors which explain the bidirectional compositional structure of predictive coding neural circuits under the free energy principle, thereby giving a formal mathematical underpinning to the bidirectionality observed in the cortex. Along the way, we explain how to compose rate-coded neural circuits using an algebra for a multicategory of linear circuit diagrams, showing subsequently that this is subsumed by lenses and polynomial functors. Because category theory is unfamiliar to many computational neuroscientists and cognitive scientists, we have made a particular effort to give clear, detailed, and approachable expositions of all the category-theoretic structures and results of which we make use.


翻译:这种分解报告了向主动推断和贝叶斯大脑的构成解析的一些初步步骤。 具体地说, 我们使用当代应用分类理论工具来为近似推算提供直流语义。 为此, 我们在“ 合成” 侧定义了贝叶斯镜的新概念, 并显示贝叶斯的更新根据组成透镜模式组成。 使用贝叶斯镜, 并受组成游戏理论的启发, 我们定义了统计游戏的分类, 并用它们来分类统计推断的各种问题。 在“ 确定” 侧, 我们展示了一种新的直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系直系。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
15+阅读 · 2021年6月27日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员