The problem of optimally scaling the proposal distribution in a Markov chain Monte Carlo algorithm is critical to the quality of the generated samples. Much work has gone into obtaining such results for various Metropolis-Hastings (MH) algorithms. Recently, acceptance probabilities other than MH are being employed in problems with intractable target distributions. There is little resource available on tuning the Gaussian proposal distributions for this situation. We obtain optimal scaling results for a general class of acceptance functions, which includes Barker's and Lazy-MH acceptance functions. In particular, optimal values for Barker's algorithm are derived and are found to be significantly different from that obtained for MH algorithms.
翻译:在Markov连锁公司Monte Carlo的算法中,最佳地按比例分配建议书的问题对于所生成样本的质量至关重要。在为各种大都会-哈斯廷(MH)算法取得这种结果方面,已经做了大量工作。最近,在难以解决的目标分布问题中,除了MH以外,其他接受可能性正在被使用。在调整Gaussian的配方方面,没有多少资源可以用于为这种情况调整。我们为一般的接受功能类别,包括Barker和Lazy-MH的接受功能,取得了最佳的按比例分配结果。特别是,Barker算法的最佳值是衍生出来的,与MH算法获得的值有很大不同。