The fair-ranking problem, which asks to rank a given set of items to maximize utility subject to group fairness constraints, has received attention in the fairness, information retrieval, and machine learning literature. Recent works, however, observe that errors in socially-salient (including protected) attributes of items can significantly undermine fairness guarantees of existing fair-ranking algorithms and raise the problem of mitigating the effect of such errors. We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed. We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes. We provide provable guarantees on the fairness and utility attainable by our framework and show that it is information-theoretically impossible to significantly beat these guarantees. Our framework works for multiple non-disjoint attributes and a general class of fairness constraints that includes proportional and equal representation. Empirically, we observe that, compared to baselines, our algorithm outputs rankings with higher fairness, and has a similar or better fairness-utility trade-off compared to baselines.


翻译:公平问题要求根据群体公平性限制对特定项目进行排位,以最大限度地发挥效用,而公平性、信息检索和机器学习文献则注意到了公平性、信息检索和机器学习文献的注意;然而,最近的著作指出,具有社会意义的物品(包括受保护的)属性方面的错误会大大削弱现有公平算法的公平性保障,并会提出减轻这种错误影响的问题; 我们根据一种模式研究公平的问题,这种模式是具有社会意义的物品的特性随机和独立地受到侵扰; 我们提出了一个公平性框架,将群体公平性要求与关于具有社会敏感性的特性的干扰的概率信息纳入其中; 我们对本框架能够实现的公平和效用提供可比较的保证,并表明从信息理论上看不可能大大战胜这些保证; 我们的框架是针对多种非互不相连的属性和包括比例和平等代表性在内的一般的公平性制约类别开展工作的; 我们注意到,与基线相比,我们的算法产出排名更为公平,并且与基线相比,我们具有类似或更公平性的公平性交易。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
0+阅读 · 2023年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员