The fair-ranking problem, which asks to rank a given set of items to maximize utility subject to group fairness constraints, has received attention in the fairness, information retrieval, and machine learning literature. Recent works, however, observe that errors in socially-salient (including protected) attributes of items can significantly undermine fairness guarantees of existing fair-ranking algorithms and raise the problem of mitigating the effect of such errors. We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed. We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes. We provide provable guarantees on the fairness and utility attainable by our framework and show that it is information-theoretically impossible to significantly beat these guarantees. Our framework works for multiple non-disjoint attributes and a general class of fairness constraints that includes proportional and equal representation. Empirically, we observe that, compared to baselines, our algorithm outputs rankings with higher fairness, and has a similar or better fairness-utility trade-off compared to baselines.
翻译:公平问题要求根据群体公平性限制对特定项目进行排位,以最大限度地发挥效用,而公平性、信息检索和机器学习文献则注意到了公平性、信息检索和机器学习文献的注意;然而,最近的著作指出,具有社会意义的物品(包括受保护的)属性方面的错误会大大削弱现有公平算法的公平性保障,并会提出减轻这种错误影响的问题; 我们根据一种模式研究公平的问题,这种模式是具有社会意义的物品的特性随机和独立地受到侵扰; 我们提出了一个公平性框架,将群体公平性要求与关于具有社会敏感性的特性的干扰的概率信息纳入其中; 我们对本框架能够实现的公平和效用提供可比较的保证,并表明从信息理论上看不可能大大战胜这些保证; 我们的框架是针对多种非互不相连的属性和包括比例和平等代表性在内的一般的公平性制约类别开展工作的; 我们注意到,与基线相比,我们的算法产出排名更为公平,并且与基线相比,我们具有类似或更公平性的公平性交易。