We present our ongoing work NeuroMapper, an in-browser visualization tool that helps machine learning (ML) developers interpret the evolution of a model during training, providing a new way to monitor the training process and visually discover reasons for suboptimal training. While most existing deep neural networks (DNNs) interpretation tools are designed for already-trained model, NeuroMapper scalably visualizes the evolution of the embeddings of a model's blocks across training epochs, enabling real-time visualization of 40,000 embedded points. To promote the embedding visualizations' spatial coherence across epochs, NeuroMapper adapts AlignedUMAP, a recent nonlinear dimensionality reduction technique to align the embeddings. With NeuroMapper, users can explore the training dynamics of a Resnet-50 model, and adjust the embedding visualizations' parameters in real time. NeuroMapper is open-sourced at https://github.com/poloclub/NeuroMapper and runs in all modern web browsers. A demo of the tool in action is available at: https://poloclub.github.io/NeuroMapper/.
翻译:我们展示了我们正在进行的工作NeuroMapper(NeuroMapper),这是一个浏览器可视化工具,它帮助机器学习(ML)的开发者解释培训期间模型的演变,为监测培训过程和目视发现亚最佳培训原因提供了一种新的方法。虽然大多数现有的深神经网络(DNN)解释工具是为已经受过训练的模型设计的,但NeuroMapper(DNNN)可以准确地想象到模型块嵌入各培训区的变化,使40,000个嵌入点的实时可视化。为了促进嵌入可视化的跨时代的空间一致性,NeuroMapper(NeuroMapper)调整了AgroUAP(AgloUMAAP),这是最近一种非线性多维性降低技术,以配合嵌入。用户可以探索Resnet-50模型的培训动态,并实时调整嵌入的可视化参数。NeuroMapper(NeroMapper)在http://githuub.com/poluobio/Nerobro 行动中的演示:http://mappro。