An ambitious goal for machine learning is to create agents that behave ethically: The capacity to abide by human moral norms would greatly expand the context in which autonomous agents could be practically and safely deployed, e.g. fully autonomous vehicles will encounter charged moral decisions that complicate their deployment. While ethical agents could be trained by rewarding correct behavior under a specific moral theory (e.g. utilitarianism), there remains widespread disagreement about the nature of morality. Acknowledging such disagreement, recent work in moral philosophy proposes that ethical behavior requires acting under moral uncertainty, i.e. to take into account when acting that one's credence is split across several plausible ethical theories. This paper translates such insights to the field of reinforcement learning, proposes two training methods that realize different points among competing desiderata, and trains agents in simple environments to act under moral uncertainty. The results illustrate (1) how such uncertainty can help curb extreme behavior from commitment to single theories and (2) several technical complications arising from attempting to ground moral philosophy in RL (e.g. how can a principled trade-off between two competing but incomparable reward functions be reached). The aim is to catalyze progress towards morally-competent agents and highlight the potential of RL to contribute towards the computational grounding of moral philosophy.


翻译:遵守人类道德规范的能力将大大扩大自主行为主体实际和安全部署的环境,例如完全自主的车辆将遇到令其部署复杂化的道德决定。虽然道德行为主体可以按照具体的道德理论(例如功利主义)通过奖励正确行为来接受培训,但在道德性质上仍然存在着广泛的分歧。承认这种分歧,最近道德哲学方面的工作表明,道德行为需要在道德不确定性下采取行动,即在采取行动时,考虑个人信誉跨越若干可信的道德理论时,这种观点将转化成强化学习领域,提出两种培训方法,在相互竞争的悬殊中实现不同点,在简单的环境中培训行为主体,在道德不确定的情况下采取行动。结果表明:(1)这种不确定性如何有助于抑制对单一理论的承诺中的极端行为,(2)在试图在卢伦德的道德哲学中(例如,如何在两种相互竞争但却不相容的道德奖赏功能之间实现原则性交换。)目的是催化在道德上具有竞争力的代理人和道德能力强势的代理人之间取得进步。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2018年12月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
30+阅读 · 2021年7月7日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2018年12月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Top
微信扫码咨询专知VIP会员