How can a probability measure be recovered with sparse support from its generalized moments? This problem, called sparse deconvolution, has been the focus of research in mathematics, theoretical computer science, and neural computing. However, there is no polynomial-time algorithm for the recovery. The best algorithm requires $O\left(\text{dimension}^{\text{poly}(1/\epsilon)}\right)$ for $\epsilon$-accurate recovery. We propose the first poly-time recovery method from carefully designed moments that requires $O\left(\text{dimension}^4\log(1/\epsilon)/\epsilon^2\right)$ computations for an $\epsilon$-accurate recovery. This method relies on learning a planted two-layer neural network with two-dimensional inputs, a finite width, and zero-one activation. For learning such networks, we establish the first poly-time complexity, and demonstrate its application in sparse deconvolution.
翻译:如何从普遍时段的微弱支持中恢复概率测量? 这个问题被称为“ 零变化”, 它一直是数学、 理论计算机科学和神经计算研究的焦点。 但是, 恢复没有多元时间算法。 最佳算法需要$Oleft( text{ dimension{ text{poly}( 1/\\ epsilon) {right) $\ epsilon$- corruptal recovery) 。 我们从仔细设计的需要$O\ left( text{dimension}4\ log( 1/\ epsilon) /\ epsilon2\right) 的时段中提出第一个多时段恢复方法, 需要$\ epsilon- curate recocrecollation 的时段计算。 。 最佳算法依赖于学习一个有两维输入、 有限宽度和零-1 激活的两层神经网络。 为了学习这些网络, 我们建立第一个多时段复杂度, 并展示其应用在稀薄解中的应用 。