In this paper, we consider the applications of process mining in intrusion detection. We propose a novel process mining inspired algorithm to be used to preprocess data in intrusion detection systems (IDS). The algorithm is designed to process the network packet data and it works well in online mode for online intrusion detection. To test our algorithm, we used the CSE-CIC-IDS2018 dataset which contains several common attacks. The packet data was preprocessed with this algorithm and then fed into the detectors. We report on the experiments using the algorithm with different machine learning (ML) models as classifiers to verify that our algorithm works as expected; we tested the performance on anomaly detection methods as well and reported on the existing preprocessing tool CICFlowMeter for the comparison of performance.
翻译:在本文中,我们考虑在入侵探测中使用过程采矿的应用。我们建议使用一种新的过程采矿法,用于入侵探测系统(IDS)的预处理数据。这种算法的设计是为了处理网络包数据,在在线入侵探测的在线模式中运作良好。为了测试我们的算法,我们使用了包含若干常见攻击的CSE-CIC-IDS2018数据集。包数据是用这种算法预先处理的,然后输入探测器。我们报告使用不同机器学习模型的算法进行实验的情况,以作为分类者,核查我们的算法是否如预期的那样有效;我们测试异常探测方法的性能,并报告了现有的预处理工具CICFLlowMeter的性能比较。