We propose a new inference method for multiple change-point detection in high-dimensional time series, targeting dense or spatially clustered signals. Specifically, we aggregate MOSUM (moving sum) statistics cross-sectionally by an $\ell^2$-norm and maximize them over time. To account for breaks only occurring in a few clusters, we also introduce a novel Two-Way MOSUM statistic, aggregated within each cluster and maximized over clusters and time. Such aggregation scheme substantially improves the performance of change-point inference. This study contributes to both theory and methodology. Theoretically, we develop an asymptotic theory concerning the limit distribution of an $\ell^2$-aggregated statistic to test the existence of breaks. The core of our theory is to extend a high-dimensional Gaussian approximation theorem fitting to non-stationary, spatial-temporally dependent data generating processes. We provide consistency results of estimated break numbers, time stamps and sizes of breaks. Furthermore, our theory facilitates novel change-point detection algorithms involving a newly proposed Two-Way MOSUM statistics. We show that our test enjoys power enhancement in the presence of spatially clustered breaks. A simulation study presents favorable performance of our testing method for non-sparse signals. Two applications concerning equity returns and COVID-19 cases in the United States demonstrate the applicability of our proposed algorithm.
翻译:我们提出了在高维时间序列中多重变化点探测的新的推论方法,以密集或空间集群信号为对象。 具体地说, 我们将MOSUM(移动总和)统计数据的分布范围以美元=2美元- 诺尔姆(mosUM) 进行跨部门汇总, 并随着时间的推移将其最大化。 为了对仅在少数组群中发生的间断进行核算, 我们还引入了一个新型的双维MOSUM统计, 在每个组群中进行汇总, 并在组群和时间上最大化。 这种汇总计划大大改善了变化点推断的性能。 这项研究有助于理论和方法。 从理论上讲, 我们开发了一种关于一个美元=2美元- $- 20 汇总的统计, 以测试断裂现象的存在。 我们理论的核心是将高度的测量近似近似值理论与非静止的、 空间- 模量数据生成过程相匹配。 我们提供了估计断裂数、 时间标记和断裂大小的一致性结果。 此外, 我们的理论促进了新提议的两维- MOSUM( MUM) 数据模拟中新的变化点检测新提议的两度应用的精确模型中, 我们展示了我们模拟模型测试了我们模拟应用的系统测试的系统测试模型的系统测试的模型的模型。