With the explosive growth of data and wireless devices, federated learning (FL) has emerged as a promising technology for large-scale intelligent systems. Utilizing the analog superposition of electromagnetic waves, over-the-air computation is an appealing approach to reduce the burden of communication in the FL model aggregation. However, with the urgent demand for intelligent systems, the training of multiple tasks with over-the-air computation further aggravates the scarcity of communication resources. This issue can be alleviated to some extent by training multiple tasks simultaneously with shared communication resources, but the latter inevitably brings about the problem of inter-task interference. In this paper, we study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel. We propose a novel model aggregation method for the alignment of local gradients for different devices, which alleviates the straggler problem that exists widely in over-the-air computation due to the channel heterogeneity. We establish a unified communication-computation analysis framework for the proposed OA-MTFL scheme by considering the spatial correlation between devices, and formulate an optimization problem of designing transceiver beamforming and device selection. We develop an algorithm by using alternating optimization (AO) and fractional programming (FP) to solve this problem, which effectively relieves the impact of inter-task interference on the FL learning performance. We show that due to the use of the new model aggregation method, device selection is no longer essential to our scheme, thereby avoiding the heavy computational burden caused by implementing device selection. The numerical results demonstrate the correctness of the analysis and the outstanding performance of the proposed scheme.


翻译:随着数据和无线设备的爆炸性增长,联合学习(FL)已成为大规模智能系统的有希望的技术。利用电磁波的模拟叠加,超空计算是减少FL模型集成中通信负担的一个诱人的方法。然而,随着智能系统的迫切需要,培训多重任务和超空计算使通信资源更加稀缺。通过培训多种任务和共享通信资源,这一问题可以在某种程度上得到缓解,但后者不可避免地带来跨任务干扰问题。在本文中,我们研究了超空计算多任务和多任务选择FL(OA-MTFL)的模拟叠加。我们提出了一个新的模型集成方法,用于调整本地的梯度,从而缓解了由于频道异质性而广泛存在的超空计算问题。我们为拟议的OA-MTFL系统创建了一个统一的通信转换分析框架,我们通过考虑空间-MTFL系统增量计算法的模拟模型, 从而有效地开发了这个系统平流成本分析, 从而展示了这个系统平流分析的系统化模型, 并优化了这个模型的升级的系统化模型, 展示了我们系统平流路端选择的系统结构的系统,从而展示了一个不平流分析结果。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关VIP内容
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员