The motivation for this thesis was to recast quantum self-testing [MY98,MY04] in operational terms. The result is a category-theoretic framework for discussing the following general question: How do different implementations of the same input-output process compare to each other? In the proposed framework, an input-output process is modelled by a causally structured channel in some fixed theory, and its implementations are modelled by causally structured dilations formalising hidden side-computations. These dilations compare through a pre-order formalising relative strength of side-computations. Chapter 1 reviews a mathematical model for physical theories as semicartesian symmetric monoidal categories. Many concrete examples are discussed, in particular quantum and classical information theory. The key feature is that the model facilitates the notion of dilations. Chapter 2 is devoted to the study of dilations. It introduces a handful of simple yet potent axioms about dilations, one of which (resembling the Purification Postulate [CDP10]) entails a duality theorem encompassing a large number of classic no-go results for quantum theory. Chapter 3 considers metric structure on physical theories, introducing in particular a new metric for quantum channels, the purified diamond distance, which generalises the purified distance [TCR10,Tom12] and relates to the Bures distance [KSW08a]. Chapter 4 presents a category-theoretic formalism for causality in terms of '(constructible) causal channels' and 'contractions'. It simplifies aspects of the formalisms [CDP09,KU17] and relates to traces in monoidal categories [JSV96]. The formalism allows for the definition of 'causal dilations' and the establishment of a non-trivial theory of such dilations. Chapter 5 realises quantum self-testing from the perspective of chapter 4, thus pointing towards the first known operational foundation for self-testing.
翻译:这个理论的动机是用操作术语重命名量子自我测试 [MY98,MY04] 。 其结果是用于讨论以下一般问题的分类理论框架: 不同执行相同的输入输出过程如何相互比较? 在提议的框架中, 输入输出过程是由某种固定理论中因果结构化的渠道模拟的, 其实施则以因果结构化的推算为模型, 正式侧截面正式化。 这些比喻通过一个预排序( 正式化) 侧截面截面的相对强度来比较。 第一章审查物理理论的数学模型, 作为半cartes正义单面单面的分类。 许多具体例子被讨论过, 尤其是量和经典信息理论。 关键特征是, 该模型将推导出一个因果化的推算。 第2章专门用来研究比喻。 它引入了少量简单但有力的分解关系, 其中一项( 重校正化 [CDP10] 直面的直径解面、 直径解的直径解面的直径基质、 第3章的直径解的直径解的直径解的直径直径解。 直径直立的直径基的直径基的直径直立的直立的直立的直立的直立的直立的直立的直立的直立的直立的直立的直立的直径基根根根根基。 。 。 3 。 3的直立的直立的直立的直立的根根根根根根根根根根根根基的直立的直立的直立的根基的根基的根基的根基的根基的根基的直基的基的基的基的基的基的基的基的基的基的基的基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的直基的根基的直基的