We introduce a notion of strong proximity join-semilattice, a predicative notion of continuous lattice which arises as the Karoubi envelop of the category of algebraic lattices. Strong proximity join-semilattices can be characterised by the coalgebras of the lower powerlocale on the wider category of proximity posets (also known as abstract bases or R-structures). Moreover, locally compact locales can be characterised in terms of strong proximity join-semilattices by the coalgebras of the double powerlocale on the category of proximity posets. We also provide more logical characterisation of a strong proximity join-semilattice, called a strong continuous finitary cover, which uses an entailment relation to present the underlying join-semilattice. We show that this structure naturally corresponds to the notion of continuous lattice in the predicative point-free topology. Our result makes the predicative and finitary aspect of the notion of continuous lattice in point-free topology more explicit.


翻译:我们引入了强烈近距离联合空间概念,这是卡鲁比对升降层类别包罗的卡鲁比对连续岩层的预言性概念。强烈近距离联合岩层的特征可以是更广大的近距离岩层(也称为抽象基础或R结构)上的低功率地区对更广大的近距离岩层(也称为 " 抽象基础 " 或 " R-结构 " )的煤层对接。此外,地方紧凑地区对近距离联合岩层的描述可以是近距离联合岩层的强烈接近岩层。我们还提供了更符合逻辑的强烈近距离联合岩层的特征,称为强烈的连续岩层覆盖,它利用一种必然关系来展示潜在的联合岩层。我们表明,这一结构自然与预定点自由地表层中连续粘结的概念相对应。我们的结果使得近点表层持续粘结概念的先入为主和直线的方面更加明确。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
119+阅读 · 2020年12月9日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年6月14日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关主题
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
119+阅读 · 2020年12月9日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员