In this paper, we present a residual neural network-based method for point set registration that preserves the topological structure of the target point set. Similar to coherent point drift (CPD), the registration (alignment) problem is viewed as the movement of data points sampled from a target distribution along a regularized displacement vector field. While the coherence constraint in CPD is stated in terms of local motion coherence, the proposed regularization term relies on a global smoothness constraint as a proxy for preserving local topology. This makes CPD less flexible when the deformation is locally rigid but globally non-rigid as in the case of multiple objects and articulate pose registration. A Jacobian-based cost function and geometric-aware statistical distances are proposed to mitigate these issues. The latter allows for measuring misalignment between the target and the reference. The justification for the k-Nearest Neighbour(kNN) graph preservation of target data, when the Jacobian cost is used, is also provided. Further, to tackle the registration of high-dimensional point sets, a constant time stochastic approximation of the Jacobian cost is introduced. The proposed method is illustrated on several 2-dimensional toy examples and tested on high-dimensional flow Cytometry datasets where the task is to align two distributions of cells whilst preserving the kNN-graph in order to preserve the biological signal of the transformed data. The implementation of the proposed approach is available at https://github.com/MuhammadSaeedBatikh/kNN-Res_Demo/ under the MIT license.
翻译:暂无翻译