This work presents the evolution of a solution for predictive maintenance to a Big Data environment. The proposed adaptation aims for predicting failures on wind turbines using a data-driven solution deployed in the cloud and which is composed by three main modules. (i) A predictive model generator which generates predictive models for each monitored wind turbine by means of Random Forest algorithm. (ii) A monitoring agent that makes predictions every 10 minutes about failures in wind turbines during the next hour. Finally, (iii) a dashboard where given predictions can be visualized. To implement the solution Apache Spark, Apache Kafka, Apache Mesos and HDFS have been used. Therefore, we have improved the previous work in terms of data process speed, scalability and automation. In addition, we have provided fault-tolerant functionality with a centralized access point from where the status of all the wind turbines of a company localized all over the world can be monitored, reducing O&M costs.
翻译:这项工作提出了对大数据环境进行预测性维护的解决方案的演进。拟议调整的目的是利用云中部署的数据驱动解决方案预测风力涡轮机的故障,由三个主要模块组成。 (一) 预测型模型生成器,通过随机森林算法为每个监测的风力涡轮机产生预测模型。 (二) 监测剂,每10分钟预测风力涡轮机在下一个小时的故障。最后,(三) 仪表板,可视化给定的预测。为了执行解决方案,使用了阿帕切斯·斯帕克、阿帕奇·卡夫卡、阿帕奇·梅索斯和HDFS。因此,我们在数据处理速度、可缩放性和自动化方面改进了先前的工作。此外,我们提供了集中的可容性功能,从那里可以监测世界各地所有风力涡轮机的状况,降低O&M成本。