Developing machine learning enabled smart manufacturing is promising for composite structures assembly process. To improve production quality and efficiency of the assembly process, accurate predictive analysis on dimensional deviations and residual stress of the composite structures is required. The novel composite structures assembly involves two challenges: (i) the highly nonlinear and anisotropic properties of composite materials; and (ii) inevitable uncertainty in the assembly process. To overcome those problems, we propose a neural network Gaussian process model considering input uncertainty for composite structures assembly. Deep architecture of our model allows us to approximate a complex process better, and consideration of input uncertainty enables robust modeling with complete incorporation of the process uncertainty. Based on simulation and case study, the NNGPIU can outperform other benchmark methods when the response function is nonsmooth and nonlinear. Although we use composite structure assembly as an example, the proposed methodology can be applicable to other engineering systems with intrinsic uncertainties.
翻译:为改善复合结构组装过程的生产质量和效率,需要对复合结构的尺寸偏差和剩余压力进行准确的预测分析。新的复合结构组装涉及两个挑战:(一) 复合材料高度非线性和厌食性特性;和(二) 组装过程中不可避免的不确定性。为了解决这些问题,我们提议一个神经网络高斯过程模型,考虑复合结构组装的投入不确定性。我们模型的深层结构使我们能够更好地接近复杂的过程,而考虑到投入不确定性,可以将过程的不确定性完全纳入到整个过程的不确定性中来进行强有力的建模。根据模拟和案例研究,NNNGPIU在反应功能非线性和非线性时可以超越其他基准方法。虽然我们以复合结构组装为例,但拟议的方法可以适用于具有内在不确定性的其他工程系统。