The prediction of valence from speech is an important, but challenging problem. The externalization of valence in speech has speaker-dependent cues, which contribute to performances that are often significantly lower than the prediction of other emotional attributes such as arousal and dominance. A practical approach to improve valence prediction from speech is to adapt the models to the target speakers in the test set. Adapting a speech emotion recognition (SER) system to a particular speaker is a hard problem, especially with deep neural networks (DNNs), since it requires optimizing millions of parameters. This study proposes an unsupervised approach to address this problem by searching for speakers in the train set with similar acoustic patterns as the speaker in the test set. Speech samples from the selected speakers are used to create the adaptation set. This approach leverages transfer learning using pre-trained models, which are adapted with these speech samples. We propose three alternative adaptation strategies: unique speaker, oversampling and weighting approaches. These methods differ on the use of the adaptation set in the personalization of the valence models. The results demonstrate that a valence prediction model can be efficiently personalized with these unsupervised approaches, leading to relative improvements as high as 13.52%.


翻译:语音价值的预测是一个重要但具有挑战性的问题。 语音价值的外部化是一个重要但具有挑战性的问题。 语音价值的外化有依赖语音的提示,这导致表演率往往大大低于对其他情感属性的预测,例如振动和支配力的预测。 改进语音价值预测的实用方法是将各种模型适应测试集中的目标发言者。 将语音情绪识别系统适应特定发言者是一个棘手的问题, 特别是深层神经网络( DNNS), 因为它需要优化数百万参数。 本研究报告建议采用一种不受监督的方法解决这一问题, 在火车上寻找与测试集中发言者具有类似声学模式的发言者。 使用选定发言者的语音样本来创建适应数据集。 这种方法利用预先培训的模型转移学习,这些模型与这些语音样本相适应。 我们提出了三种备选适应战略: 独特的发言者、 过度采样和加权方法。 这些方法与在价值模型个性化中的适应数据集的使用不同。 研究结果表明, 价值预测模型可以高效地个人化, 52%, 作为高超近的改进方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员