We present Graph Attention Collaborative Similarity Embedding (GACSE), a new recommendation framework that exploits collaborative information in the user-item bipartite graph for representation learning. Our framework consists of two parts: the first part is to learn explicit graph collaborative filtering information such as user-item association through embedding propagation with attention mechanism, and the second part is to learn implicit graph collaborative information such as user-user similarities and item-item similarities through auxiliary loss. We design a new loss function that combines BPR loss with adaptive margin and similarity loss for the similarities learning. Extensive experiments on three benchmarks show that our model is consistently better than the latest state-of-the-art models.
翻译:我们提出“图形关注合作相似性嵌入”(GACSE),这是一个新的建议框架,利用用户项目两边图中的协作信息进行代表性学习。我们的框架由两部分组成:第一部分是学习清晰的图形合作过滤信息,例如通过将传播与关注机制嵌入用户项目关联,第二部分是学习隐含的图形合作信息,例如用户和用户的相似性,以及通过附带损失的物品项目相似性。我们设计了一个新的损失功能,将BPR损失与适应性差值和类似性损失结合起来,用于相似性学习。关于三个基准的广泛实验显示,我们的模型始终比最新的最新模型要好。