The recent WSNet [1] is a new model compression method through sampling filterweights from a compact set and has demonstrated to be effective for 1D convolutionneural networks (CNNs). However, the weights sampling strategy of WSNet ishandcrafted and fixed which may severely limit the expression ability of the resultedCNNs and weaken its compression ability. In this work, we present a novel auto-sampling method that is applicable to both 1D and 2D CNNs with significantperformance improvement over WSNet. Specifically, our proposed auto-samplingmethod learns the sampling rules end-to-end instead of being independent of thenetwork architecture design. With such differentiable weight sampling rule learning,the sampling stride and channel selection from the compact set are optimized toachieve better trade-off between model compression rate and performance. Wedemonstrate that at the same compression ratio, our method outperforms WSNetby6.5% on 1D convolution. Moreover, on ImageNet, our method outperformsMobileNetV2 full model by1.47%in classification accuracy with25%FLOPsreduction. With the same backbone architecture as baseline models, our methodeven outperforms some neural architecture search (NAS) based methods such asAMC [2] and MNasNet [3].


翻译:最近的WSNet [1] 是一个新的模型压缩方法,通过一组紧凑的抽样过滤器进行取样,并证明对1D进化网络(CNNs)有效。然而,WSNet的加权抽样战略是手动和固定的,可能严重限制结果CNN的表达能力,削弱压缩能力。在这项工作中,我们提出了一个适用于1D和2DCNN的新型自动抽样方法,其性能比WSNet明显改进。具体地说,我们提议的自动抽样方法学习了从端到端的抽样规则,而不是独立于网络结构设计。在进行这种不同的加权抽样规则学习后,从该组中取样和频道选择的重量战略可能会严重限制结果CNN的表达能力,并削弱其压缩能力。在这项工作中,我们提出了一种适用于1DCNNISNet6.5%的新的自动抽样方法。此外,在图像网络上,我们的方法比WSNet2全模范模型的全模范化,而不是独立于网络结构设计设计设计。在1.47 %NA2中,从该组取样和频道选择的精准性模型,作为基础结构的模型,[ASOM3] 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
3+阅读 · 2018年6月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Github项目推荐 | AutoML与轻量模型列表
AI研习社
9+阅读 · 2019年5月4日
AutoML与轻量模型大列表
专知
8+阅读 · 2019年4月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员