For most existing federated learning algorithms, each round consists of minimizing a loss function at each client to learn an optimal model at the client, followed by aggregating these client models at the server. Point estimation of the model parameters at the clients does not take into account the uncertainty in the models estimated at each client. In many situations, however, especially in limited data settings, it is beneficial to take into account the uncertainty in the client models for more accurate and robust predictions. Uncertainty also provides useful information for other important tasks, such as active learning and out-of-distribution (OOD) detection. We present a framework for Bayesian federated learning where each client infers the posterior predictive distribution using its training data and present various ways to aggregate these client-specific predictive distributions at the server. Since communicating and aggregating predictive distributions can be challenging and expensive, our approach is based on distilling each client's predictive distribution into a single deep neural network. This enables us to leverage advances in standard federated learning to Bayesian federated learning as well. Unlike some recent works that have tried to estimate model uncertainty of each client, our work also does not make any restrictive assumptions, such as the form of the client's posterior distribution. We evaluate our approach on classification in federated setting, as well as active learning and OOD detection in federated settings, on which our approach outperforms various existing federated learning baselines.


翻译:对于大多数现有的联盟式学习算法而言,每一回合都包括最大限度地减少每个客户的损失功能,以便在客户中学习最佳模式,然后在服务器上汇总这些客户模型模型模型。客户模型参数的点估计没有考虑到每个客户估计模型的不确定性。然而,在许多情况下,特别是在有限的数据环境下,考虑到客户模型的不确定性,以便作出更准确、更稳健的预测,是有好处的。不确定性还为其他重要任务提供了有用的信息,例如积极学习和分配外检测。我们为Bayesian联合会学习提供了一个框架,每个客户都用其培训数据来推断事后预测分布,并提出了各种方法来汇总服务器上针对客户的预测分布。由于沟通和汇总预测分布可能具有挑战性和费用,我们的方法是以蒸馏每个客户的预测性分布到一个单一的深层神经网络中。这使我们能够利用标准基底化学习的进展来学习Bayespererated(OOOD) 。与最近的一些工作不同,这些工作试图用它来估算每个客户的预测性弹性分类方法,作为我们每个客户的模型的精确的分类方法,作为我们目前的一种学习的统计格式的统计的模型,也用来评估。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月3日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Bayesian Deep Learning
Arxiv
60+阅读 · 2020年7月2日
Arxiv
43+阅读 · 2019年12月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关论文
Arxiv
0+阅读 · 2022年8月3日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
31+阅读 · 2021年3月29日
A Survey on Bayesian Deep Learning
Arxiv
60+阅读 · 2020年7月2日
Arxiv
43+阅读 · 2019年12月20日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员