We study differentially private stochastic optimization in convex and non-convex settings. For the convex case, we focus on the family of non-smooth generalized linear losses (GLLs). Our algorithm for the $\ell_2$ setting achieves optimal excess population risk in near-linear time, while the best known differentially private algorithms for general convex losses run in super-linear time. Our algorithm for the $\ell_1$ setting has nearly-optimal excess population risk $\tilde{O}\big(\sqrt{\frac{\log{d}}{n}}\big)$, and circumvents the dimension dependent lower bound of [AFKT21] for general non-smooth convex losses. In the differentially private non-convex setting, we provide several new algorithms for approximating stationary points of the population risk. For the $\ell_1$-case with smooth losses and polyhedral constraint, we provide the first nearly dimension independent rate, $\tilde O\big(\frac{\log^{2/3}{d}}{{n^{1/3}}}\big)$ in linear time. For the constrained $\ell_2$-case, with smooth losses, we obtain a linear-time algorithm with rate $\tilde O\big(\frac{1}{n^{3/10}d^{1/10}}+\big(\frac{d}{n^2}\big)^{1/5}\big)$. Finally, for the $\ell_2$-case we provide the first method for {\em non-smooth weakly convex} stochastic optimization with rate $\tilde O\big(\frac{1}{n^{1/4}}+\big(\frac{d}{n^2}\big)^{1/6}\big)$ which matches the best existing non-private algorithm when $d= O(\sqrt{n})$. We also extend all our results above for the non-convex $\ell_2$ setting to the $\ell_p$ setting, where $1 < p \leq 2$, with only polylogarithmic (in the dimension) overhead in the rates.


翻译:我们在 comvex 和非 convex 设置中研究不同私人的配置优化 。 在 convex 的情况下, 我们侧重于非moth 通用线性损失( GLLs) 的家庭。 我们的 $_ 2美元设置的算法在近线性时间里实现了最佳的超人口风险, 而对于一般的 convex 损失,我们最已知的不同私人算法在超线时间里运行。 我们的 $\ ell_ 1美元设置的算法 接近最佳的超额人口风险 $\ talde{ Obig (\ sqrt) 美元 (Obig (sqrt) = 美元 Orc_ d ⁇ n) 普通线性损失。 我们提供第一个近维度独立率, $\ tilde 以上 Orq_ lax 美元, lexxxx lax rmal_ rice rice_ rock_ r_ r_ r\\\\\\\\\\\\ r\\\\\\\\\ dxxx rxxxxxxxxxxxx rxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年7月31日
专知会员服务
41+阅读 · 2021年4月2日
【斯坦福】凸优化圣经- Convex Optimization (附730pdf下载)
专知会员服务
220+阅读 · 2020年6月5日
已删除
将门创投
11+阅读 · 2019年8月13日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员