In the paper, we propose a class of accelerated zeroth-order and first-order momentum methods for both nonconvex mini-optimization and minimax-optimization. Specifically, we propose a new accelerated zeroth-order momentum (Acc-ZOM) method to solve stochastic mini-optimization problems. We prove that the Acc-ZOM method achieves a lower query complexity of $\tilde{O}(d^{3/4}\epsilon^{-3})$ for finding an $\epsilon$-stationary point, which improves the best known result by a factor of $O(d^{1/4})$ where $d$ denotes the parameter dimension. In particular, the Acc-ZOM does not need large batches that are required in the existing zeroth-order stochastic algorithms. At the same time, we propose an accelerated zeroth-order momentum descent ascent (Acc-ZOMDA) method for black-box minimax-optimization. We prove that the Acc-ZOMDA method reaches the best known query complexity of $\tilde{O}((d_1+d_2)\kappa_y^{3}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point, where $d_1$ and $d_2$ denote dimensions of optimization parameters and $\kappa_y$ is condition number. Moreover, we propose an accelerated first-order momentum descent ascent (Acc-MDA) method for solving white-box minimax problems, and prove that it achieves a lower gradient complexity of $\tilde{O}(\kappa_y^{2.5}\epsilon^{-3})$ given batch size $b=\kappa_y^{4}$ for finding an $\epsilon$-stationary point, which improves the best known result by a factor of $O(\kappa_y^{1/2})$. Extensive experimental results on the black-box adversarial attack to deep neural networks (DNNs) and poisoning attack demonstrate the efficiency of our algorithms.
翻译:在纸张中, 我们提议了一种加速零级和一阶维度的方法, 用于为非convex mini- optical 和 minimax- opimization 找到 $2 emovial- dismodial listations (cc- ZOM) 加速零级和一阶维度。 具体地说, 我们提出一种新的加速零级动力度( cc- ZOM) 方法, 用于为非colvex minicial- dismodial2 moditional- diocial- dismoditional $2 mocial- divil- dismodificial- divil mocial- moudiocial- moudiocial_ a mocial_ mocial_ mocial_ mocial_ mocial_ moudal_ moudal_ modia_ modia_ modia_ lax_ modia_ lax_ modia_ modia_ moud_ mouds_ la_ moudal_ moud_ moud_ mouds_ mouds_ mouds_ d_ moudal_ d_ d_ moud_ moud_ d_ d_ d_ d_ d_ d_ d_ d_ d_ d_ moud_ d_ d_ moud_ d_ d_ moudal_ d_ d_ d_ d_ moud_ moud_ moud_ moud_ moud_ moud_ d_ d_ moud_ d_ d_ moud_ moud_ moud_ d_ d_ d_ d_ d_ d_ moud_ moud_ d_ moud_ moud_ moud_ mouds_ moud_ mouds_ d_ d_ d_ d_ moud_ d_ moud_ d_ d_ d_ d_ d_ d_ d_ mouds_ moud_ moud_ moud_ mouds_