In this paper, we describe a hierarchy of program transformers in which the transformer at each level of the hierarchy builds on top of those at lower levels. The program transformer at level 1 of the hierarchy corresponds to positive supercompilation, and that at level 2 corresponds to distillation. We prove that the transformers at each level terminate. We then consider the speedups that can be obtained at each level in the hierarchy, and try to characterise the improvements that can be made.


翻译:在本文中, 我们描述一个程序变压器的等级, 使等级的各级变压器在较低等级的变压器之上建起。 等级的一级变压器对应正超合成, 2级的变压器对应蒸馏。 我们证明每个等级的变压器终止了。 然后我们考虑在等级的每个级别上可以得到的加速, 并尝试描述可以作出的改进。

0
下载
关闭预览

相关内容

知识增强预训练语言模型:全面综述
专知会员服务
90+阅读 · 2021年10月19日
专知会员服务
34+阅读 · 2021年8月16日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
6+阅读 · 2019年7月11日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
VIP会员
相关VIP内容
知识增强预训练语言模型:全面综述
专知会员服务
90+阅读 · 2021年10月19日
专知会员服务
34+阅读 · 2021年8月16日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
专知会员服务
124+阅读 · 2020年9月8日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
19+阅读 · 2020年12月23日
Arxiv
6+阅读 · 2019年7月11日
Universal Transformers
Arxiv
5+阅读 · 2019年3月5日
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Music Transformer
Arxiv
5+阅读 · 2018年12月12日
Top
微信扫码咨询专知VIP会员