We propose a general formulation of a univariate estimation-of-distribution algorithm (EDA). It naturally incorporates the three classic univariate EDAs \emph{compact genetic algorithm}, \emph{univariate marginal distribution algorithm} and \emph{population-based incremental learning} as well as the \emph{max-min ant system} with iteration-best update. Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift that immediately gives the existing results proven separately for the four algorithms named above. Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks.
翻译:我们提出一个单一分配估计算法(EDA)的一般提法。 它自然包含三种经典的单一分配估计算法(EDA) 。 它自然包含三种典型的单一的 EDAs \ emph{ unvariate 边际分配算法} 和\ emph{ 人口为基础的递增学习}, 以及具有迭代- 最佳更新的 emph{ max- min ant system 。 我们对现有算法的统一描述使得能够对这些算法进行统一分析; 我们通过提供基因漂移分析来证明这一点, 并立即为上述四种算法分别提供现有结果。 我们的一般模型还包括比现有算法更有效率的 EDAs, 这些也许不难找到, 正如我们为 OneMax 和 TeingOnes 基准所展示的那样。