Event extraction is challenging due to the complex structure of event records and the semantic gap between text and event. Traditional methods usually extract event records by decomposing the complex structure prediction task into multiple subtasks. In this paper, we propose Text2Event, a sequence-to-structure generation paradigm that can directly extract events from the text in an end-to-end manner. Specifically, we design a sequence-to-structure network for unified event extraction, a constrained decoding algorithm for event knowledge injection during inference, and a curriculum learning algorithm for efficient model learning. Experimental results show that, by uniformly modeling all tasks in a single model and universally predicting different labels, our method can achieve competitive performance using only record-level annotations in both supervised learning and transfer learning settings.
翻译:由于事件记录的复杂结构以及文字和事件之间的语义差异,事件提取具有挑战性。传统方法通常通过将复杂的结构预测任务分解成多个子任务来提取事件记录。在本文中,我们提议了Text2Event,这是一个从文字中直接提取事件的从顺序到结构的生成模式,可以以端到端的方式从文字中提取事件。具体地说,我们设计了一个统一事件提取的序列到结构网络,在推断过程中对事件知识注入的解码算法有限,以及高效模型学习的课程学习算法。 实验结果显示,通过统一在单一模型中对所有任务进行建模,并普遍预测不同的标签,我们的方法可以实现竞争性业绩,只使用监督学习和转移学习环境中的记录级别说明。