In this paper we explore capabilities of spiking neural networks in solving multi-task classification problems using the approach of single-tasking of multiple tasks. We designed and implemented a multi-task spiking neural network (MT-SNN) that can learn two or more classification tasks while performing one task at a time. The task to perform is selected by modulating the firing threshold of leaky integrate and fire neurons used in this work. The network is implemented using Intel's Lava platform for the Loihi2 neuromorphic chip. Tests are performed on dynamic multitask classification for NMNIST data. The results show that MT-SNN effectively learns multiple tasks by modifying its dynamics, namely, the spiking neurons' firing threshold.
翻译:在本文中,我们探索了利用多任务单任务单任务方法解决多任务分类问题的神经网络跳跃能力。我们设计并实施了多任务跳跃神经网络(MT-SNN),可以在一次执行一项任务时学习两个或两个以上分类任务。要完成的任务是通过调整这项工作中使用的漏泄集成和火灾神经元的发射阈值来选择。这个网络使用Intel的Lava平台用于Loihi2神经突变芯片。测试是在NMNIST数据的动态多任务分类上进行的。结果显示,MT-SNN通过改变其动态,即跳动神经元的发射阈值,有效地学习了多项任务。