We propose a simple technique that, if combined with algorithms for computing functions of triangular matrices, can make them more efficient. Basically, such a technique consists in a specific scaling similarity transformation that reduces the departure from normality of a triangular matrix, thus decreasing its norm and in general its function condition number. It can easily be extended to non-triangular matrices, provided that it is combined with algorithms involving a prior Schur decomposition. Situations where the technique should be used or not will be discussed in detail. Special attention is devoted to particular algorithms like the inverse scaling and squaring to the matrix logarithm and the scaling and squaring to the matrix exponential. The advantages of our proposal are supported by theoretical results and illustrated with numerical experiments.


翻译:我们建议一种简单的方法,如果与三角矩阵计算函数的算法相结合,可以提高这些算法的效率。基本上,这种技术包括具体的缩放相似性转换,减少三角矩阵偏离正常性的情况,从而降低其规范,并一般地降低其功能条件编号。它很容易推广到非三角矩阵,只要它与先前Schur分解的算法相结合。在使用或不使用该技术的情况下,将进行详细讨论。特别注意特定的算法,例如反缩放和对齐矩阵对数以及缩放和对齐矩阵指数。我们提案的优点得到理论结果的支持,并以数字实验加以说明。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
54+阅读 · 2022年1月1日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员