Graph Neural Networks (GNNs) have shown success in many real-world applications that involve graph-structured data. Most of the existing single-node GNN training systems are capable of training medium-scale graphs with tens of millions of edges; however, scaling them to large-scale graphs with billions of edges remains challenging. In addition, it is challenging to map GNN training algorithms onto a computation node as state-of-the-art machines feature heterogeneous architecture consisting of multiple processors and a variety of accelerators. We propose HyScale-GNN, a novel system to train GNN models on a single-node heterogeneous architecture. HyScale- GNN performs hybrid training which utilizes both the processors and the accelerators to train a model collaboratively. Our system design overcomes the memory size limitation of existing works and is optimized for training GNNs on large-scale graphs. We propose a two-stage data pre-fetching scheme to reduce the communication overhead during GNN training. To improve task mapping efficiency, we propose a dynamic resource management mechanism, which adjusts the workload assignment and resource allocation during runtime. We evaluate HyScale-GNN on a CPU-GPU and a CPU-FPGA heterogeneous architecture. Using several large-scale datasets and two widely-used GNN models, we compare the performance of our design with a multi-GPU baseline implemented in PyTorch-Geometric. The CPU-GPU design and the CPU-FPGA design achieve up to 2.08x speedup and 12.6x speedup, respectively. Compared with the state-of-the-art large-scale multi-node GNN training systems such as P3 and DistDGL, our CPU-FPGA design achieves up to 5.27x speedup using a single node.


翻译:内径网络( GNN) 在许多包含图形结构数据的真实世界应用中表现出成功。 现有的单节 GNN 培训系统大多能够用数千万边缘来培训中度图形; 但是, 将它们推广到具有数十亿边缘的大型图形中仍然具有挑战性。 此外, 将 GNN 培训算法映射到一个计算节点, 作为由多个处理器和各种加速器组成的最高级机器混合结构。 我们提议 HySate- GNNN, 一个在单节速度结构中培训 GNNN 模型的新系统。 HYSAL- GNNNN 进行混合培训, 既利用处理器和加速器来培训模型。 我们的系统设计克服了现有工程的内存规模限制,并优化了将GNNW 用于大型图形图解的升级前系统。 我们提出一个两阶段的数据转换计划, 在 GNNN 培训中, 改进任务绘图效率, 我们提议一个动态资源管理机制, 将C- NNPO- NF 的大型设计流程中, 运行一个大规模C- NG 的 C- NG 设计。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
16+阅读 · 2022年11月1日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
19+阅读 · 2021年2月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员