The rules in a shape grammar apply in terms of embedding to take advantage of the parts that emerge visually in the appearance of shapes. While the shapes are kept unanalyzed throughout a computation, their descriptions can be defined retrospectively based on how the rules are applied. An important outcome of this is that continuity for rules is not built-in but it is "fabricated" retrospectively to explain a computation as a continuous process. An aspect of continuity analysis that has not been addressed in the literature is how to decide which mapping forms to use to study the continuity of rule applications. This is addressed in this paper in a new approach to continuity analysis, which uses recent results on shape topology and continuous mappings. A characterization is provided that distinguishes the suitable mapping forms from those that are inherently discontinuous or practically inconsequential for continuity analysis. It is also shown that certain inherent properties of shape topologies and continuous mappings provide an effective method of computing topologies algorithmically.


翻译:形状语法中的规则适用于嵌入,以利用在形状外观中显露出来的部分。 虽然在计算过程中这些形状没有经过分析, 它们的描述可以追溯性地根据规则的适用情况加以界定。 其重要结果是, 规则的连续性不是内在的, 而是“ 编造” 将计算解释为一个连续的过程。 文献中未涉及的连续性分析的一个方面是如何决定使用哪些映射形式来研究规则应用程序的连续性。 本文用新的连续性分析方法处理了这一点, 这种方法使用形状表态和连续绘图的最新结果。 所提供的特征描述区分了适当的绘图形式与连续性分析固有的不连续性或实际上不相容的绘图形式。 还表明,形状表理学和连续绘图的某些固有特性提供了一种有效的计算表理学方法。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
150+阅读 · 2021年5月9日
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年9月3日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
0+阅读 · 2021年9月9日
VIP会员
相关VIP内容
【经典书】算法博弈论,775页pdf,Algorithmic Game Theory
专知会员服务
150+阅读 · 2021年5月9日
专知会员服务
77+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员