Numerically predicting the performance of heterogenous structures without scale separation represents a significant challenge to meet the critical requirements on computational scalability and efficiency -- adopting a mesh fine enough to fully account for the small-scale heterogeneities leads to prohibitive computational costs while simply ignoring these fine heterogeneities tends to drastically over-stiffen the structure's rigidity. This study proposes an approach to construct new material-aware shape (basis) functions per element on a coarse discretization of the structure with respect to each curved bridge nodes (CBNs) defined along the elements' boundaries. Instead of formulating their derivation by solving a nonlinear optimization problem, the shape functions are constructed by building a map from the CBNs to the interior nodes and are ultimately presented in an explicit matrix form as a product of a B\'ezier interpolation transformation and a boundary-interior transformation. The CBN shape function accomodates more flexibility in closely capturing the coarse element's heterogeneity, overcomes the important and challenging issues of inter-element stiffness and displacement discontinuity across interface between coarse elements, and improves the analysis accuracy by orders of magnitude; they also meet the basic geometric properties of shape functions that avoid aphysical analysis results. Extensive numerical examples, including a 3D industrial example of billions of degrees of freedom, are also tested to demonstrate the approach's performance in comparison with results obtained from classical approaches.


翻译:以数字方式预测不同结构的性能,而不进行比例分化,这是满足计算可缩缩缩率和效率的关键要求的重大挑战 -- -- 采用足以充分说明小规模异差问题的网格罚款,从而充分说明小规模异差性,从而导致令人望而却步的计算成本,而只是忽视这些细微异性,往往使结构的僵硬性大为过于紧张。本研究报告建议采用一种方法,在沿元素边界界定的每个弯曲桥结点(CBNs)上粗糙的离散结构结构结构每个要素构建新的物质认知形状(basis)功能。采用这一方法,不是通过解决非线性优化问题来制定它们的衍生,而是通过绘制从CBNs到内部结点的地图来构建形状功能,最终以明确的矩阵形式展示出结构的僵硬性变化和边界内变异性。CBN形状的功能在更灵活地捕捉取结构结构结构结构的分解,克服重要和具有挑战性的比较问题,而是通过不线性化的深度分析,同时展示了深度的稳定性和深度分析结果。

0
下载
关闭预览

相关内容

【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
【干货书】机器人元素Elements of Robotics ,311页pdf
专知会员服务
34+阅读 · 2021年4月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月29日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员