Working in a variant of the intersection type assignment system of Coppo, Dezani-Ciancaglini and Veneri [1981], we prove several facts about sets of terms having a given intersection type. One of our results is that every strongly normalizing term M admits a *uniqueness typing*, which is a pair $(\Gamma,A)$ such that 1) $\Gamma \vdash M : A$ 2) $\Gamma \vdash N : A \Longrightarrow M =_{\beta\eta} N$ We also discuss several presentations of intersection type algebras, and the corresponding choices of type assignment rules. We also prove that the set of closed terms having a given intersection type is separable, and, if infinite, forms an adequate numeral system.
翻译:在Coppo、Dezani-Ciancaglini和Veneri的交叉类型分配制度中,我们用一个变式,用一个变式,即Coppo、Dezani-Ciancaglini和Veneri[1981年],来证明关于具有特定交叉类型的一系列术语的若干事实。我们的结果之一是,每个强烈正常化的 M 术语都接受“ 独一类型”打字*,这是一对美元(Gamma,A),因此1,1,$\Gamma\vdash M:A$2,$Gamma\vdash N:A\Longrightrow M ⁇ beta\eta}N$1,我们还讨论多个交叉类型代数的演示,以及相应的类型分配规则选择。我们还证明,具有特定交叉类型的封闭型术语是可分解的,如果是无限的,则构成一个适当的数字系统。