This paper considers the problem of recovering the permutation of an n-dimensional random vector X observed in Gaussian noise. First, a general expression for the probability of error is derived when a linear decoder (i.e., linear estimator followed by a sorting operation) is used. The derived expression holds with minimal assumptions on the distribution of X and when the noise has memory. Second, for the case of isotropic noise (i.e., noise with a diagonal scalar covariance matrix), the rates of convergence of the probability of error are characterized in the high and low noise regimes. In the low noise regime, for every dimension n, the probability of error is shown to behave proportionally to {\sigma}, where {\sigma} is the noise standard deviation. Moreover, the slope is computed exactly for several distributions and it is shown to behave quadratically in n. In the high noise regime, for every dimension n, the probability of correctness is shown to behave as 1/{\sigma}, and the exact expression for the rate of convergence is also provided.
翻译:本文考虑了在高森噪音中观察到的 n- 维随机矢量 X 的变异问题。 首先, 当使用线性解码器( 即线性估计值, 并进行排序操作) 时, 得出误差概率的一般表达式。 衍生表达式保持对 X 分布的最小假设, 当噪音有内存时 。 其次, 对于异位噪音( 带对角天平变异矩阵的噪音), 误差概率的汇合率在高低噪音系统中的特征。 在低噪音系统中, 每个维度的误差概率都显示与 {sigma} 成比例, 在那里 {sigma} 是噪声标准偏差。 此外, 斜度精确地计算了多个分布, 并显示在 n 中以二次方位为 。 在高噪音系统中, 误差概率表现为 1/ / sigma}, 以及 趋同率的准确表达式也被提供 。