Purpose: It is challenging to recover magnetic susceptibility in the presence of phase errors, which may be caused by noise or strong local-susceptibility shifts in cases of brain hemorrhage and calcification. We propose a Bayesian formulation for quantitative susceptibility mapping (QSM) where a customized Gaussian-mixture distribution is used to model the long-tailed noise distribution. Theory: Complex exponential functions of the phase are used as nonlinear measurements. Wavelet coefficients of the susceptibility map are modeled by the Laplace distribution. Measurement noise is modeled by a two-component Gaussian-mixture distribution, where the second component is reserved to model the noise outliers. The susceptibility map and distribution parameters are jointly recovered using approximate message passing (AMP). Methods: The proposed AMP with built-in parameter estimation (AMP-PE) is compared with the state-of-the-art nonlinear L1-QSM and MEDI approaches that adopt the L1-norm and L2-norm data-fidelity terms respectively. They are tested on the simulated and in vivo datasets. Results: On the simulated Sim2Snr1 dataset, AMP-PE achieved the lowest NRMSE and SSIM, MEDI achieved the lowest HFEN. On the in vivo datasets, AMP-PE is more robust and better at preserving structural details and removing streaking artifacts in the hemorrhage cases than L1-QSM and MEDI. Conclusion: By leveraging a customized Gaussian-mixture noise prior, AMP-PE achieves better performance in challenging cases of brain hemorrhage and calcification. It is equipped with built-in parameter estimation, which avoids subjective bias from the usual visual-tuning step of in vivo reconstruction.
翻译:目的: 在出现相位错误时, 难以恢复磁感, 这可能是由噪音或脑出血和电化情况下的强烈局部感知性变化造成的。 我们建议使用定制的高尔氏混合分布法来模拟长尾噪音分布。 理论: 该阶段复杂的指数性功能用作非线性测量。 易感性图的波列系数是用Laplace分布模型建模的。 测量噪音的模型是由两部分高尔氏混合分布制成的, 其中第二部分保留用于模拟噪声外端。 我们建议使用一个定制的高尔氏混合分布法(QSMS)进行定量感应变配方配方(QSMS) 。 方法: 将具有内建参数估计(AMP- PEPE) 的拟议AMP 与采用L1- 诺姆- 和L2- 诺尔姆数据- 格式化方法的模型。 在SIM1 常规 和IMS IM1 数据变现中, 在SIM- SIMS 最起码的模型中, 和SIM- SIM- SIMS 数据变现中, 的测测测测测得更优。