Independent component analysis (ICA) has been a popular dimension reduction tool in statistical machine learning and signal processing. In this paper, we present a convergence analysis for an online tensorial ICA algorithm, by viewing the problem as a nonconvex stochastic approximation problem. For estimating one component, we provide a dynamics-based analysis to prove that our online tensorial ICA algorithm with a specific choice of stepsize achieves a sharp finite-sample error bound. In particular, under a mild assumption on the data-generating distribution and a scaling condition such that $d^4 / T$ is sufficiently small up to a polylogarithmic factor of data dimension $d$ and sample size $T$, a sharp finite-sample error bound of $\tilde O(\sqrt{d / T})$ can be obtained. As a by-product, we also design an online tensorial ICA algorithm that estimates multiple independent components in parallel, achieving desirable finite-sample error bound for each independent component estimator.
翻译:独立元件分析(ICA)一直是统计机学习和信号处理中流行的减少维度工具。 在本文中, 我们通过将问题视为非convex 随机近似问题, 提出在线强制ICA算法的趋同分析。 在估算一个元件时, 我们提供动态分析, 以证明我们具有特定步骤选择的在线强制ICA算法能够实现一个精确的有限抽样错误。 特别是, 在对数据生成分布的微小假设和规模化条件下, 美元/ 美元足够小到数据维度的多元系数 $d$4 和样本大小$T$T$, 一个由 $tilde O( sqrt{d/ T}) 约束的急性有限抽样错误。 作为副产品, 我们还设计了一个在线抗控ICA算法, 该算法可以同时估计多个独立元件, 实现每个独立元件的合适有限抽样错误 。