Many important science and engineering problems can be converted into NP-complete problems which are of significant importance in computer science and mathematics. Currently, neither existing classical nor quantum algorithms can solve these problems in polynomial time. To overcome this difficulty, this paper proposes a quantum feasibility labeling (QFL) algorithm to label all possible solutions to the vertex coloring problem, which is a well-known NP-complete problem. The variational quantum search (VQS) algorithm proposed in my previous work has been demonstrated, up to 26 qubits, to achieve an exponential speedup in finding good element(s) from an unstructured database. Using the labels and the associated possible solutions as input, the VQS can find all feasible solutions to the vertex coloring problem. The number of qubits and the circuit depth required by the QFL each is a polynomial function of the number of vertices, the number of edges, and the number of colors of a vertex coloring problem. The QFL together with the VQS could be the first algorithm to solve an NP-complete problem in polynomial time, provided that the VQS is proved to be efficient for any number of qubits.
翻译:许多重要的科学和工程问题可以转换成在计算机科学和数学中非常重要的NP问题。 目前,现有的古典算法和量子算法都无法在多元时间解决这些问题。 为了克服这一困难,本文件提出一个量子可行性标签(QFL)算法,以标出所有可能解决脊椎颜色问题的办法,这是一个众所周知的NP-完整的问题。我先前工作中提议的变异量量子搜索算法(VQS)已经证明,多达26公尺,以达到从一个没有结构的数据库中找到良好元素的指数加速速度。使用标签和相关的可能解决办法作为输入,VQS可以找到所有可行的办法解决脊椎颜色问题的办法。QFLS每条要求的量子数和电路深度是脊椎数、边缘数和脊椎颜色数的多元函数。 QFLLS与VQS可以成为第一个解决任何高效的分子颜色问题的方法, 在一个圆柱形S 时间里, 提供高效的QLFLLS 算算算出一个有效的数字。