A transfer learning paradigm is proposed for "knowledge" transfer between the human brain and convolutional neural network (CNN) for a construction hazard categorization task. Participants' brain activities are recorded using electroencephalogram (EEG) measurements when viewing the same images (target dataset) as the CNN. The CNN is pretrained on the EEG data and then fine-tuned on the construction scene images. The results reveal that the EEG-pretrained CNN achieves a 9 % higher accuracy compared with a network with same architecture but randomly initialized parameters on a three-class classification task. Brain activity from the left frontal cortex exhibits the highest performance gains, thus indicating high-level cognitive processing during hazard recognition. This work is a step toward improving machine learning algorithms by learning from human-brain signals recorded via a commercially available brain-computer interface. More generalized visual recognition systems can be effectively developed based on this approach of "keep human in the loop".
翻译:为构建危险分类任务,建议了人类大脑和进化神经网络之间的“知识”传输模式。参与者的大脑活动在查看CNN的相同图像(目标数据集)时,使用电脑图(EEEG)的测量方法记录。CNN先用EEG数据培训,然后对建筑场景图像进行微调。结果显示,EEEG培训的CNN与结构相同但随机初始化参数的3级分类任务的网络相比,精确度提高了9%。左前皮层的脑活动显示了最高的性能收益,从而显示了在危险识别期间的高级认知处理。这是通过从商业上现有的大脑计算机界面记录的人脑信号中学习来改进机器学习算法的一个步骤。根据“在循环中深藏人类”的方法,可以有效地开发更普遍的视觉识别系统。