Asthma is a common, usually long-term respiratory disease with negative impact on global society and economy. Treatment involves using medical devices (inhalers) that distribute medication to the airways and its efficiency depends on the precision of the inhalation technique. There is a clinical need for objective methods to assess the inhalation technique, during clinical consultation. Integrated health monitoring systems, equipped with sensors, enable the recognition of drug actuation, embedded with sound signal detection, analysis and identification, from intelligent structures, that could provide powerful tools for reliable content management. Health monitoring systems equipped with sensors, embedded with sound signal detection, enable the recognition of drug actuation and could be used for effective audio content analysis. This paper revisits sound pattern recognition with machine learning techniques for asthma medication adherence assessment and presents the Respiratory and Drug Actuation (RDA) Suite (https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark) for benchmarking and further research. The RDA Suite includes a set of tools for audio processing, feature extraction and classification procedures and is provided along with a dataset, consisting of respiratory and drug actuation sounds. The classification models in RDA are implemented based on conventional and advanced machine learning and deep networks' architectures. This study provides a comparative evaluation of the implemented approaches, examines potential improvements and discusses on challenges and future tendencies.
翻译:哮喘是一种常见的、通常为长期的呼吸系统疾病,对全球社会和经济产生负面影响。治疗涉及使用医疗设备(吸入器)将药物分配到气道中,其有效性取决于吸入技术的精度。临床上需要客观的方法来评估临床会诊期间的吸入技术。装备有传感器的综合健康监测系统能够识别药物作用,嵌入声音信号检测、分析和识别的智能结构,可为可靠的内容管理提供强大的工具。装备有传感器的健康监测系统,嵌入声音信号检测,能够识别药物作用,并可用于有效的音频内容分析。本文重新审视了使用机器学习技术进行哮喘用药依从性评估的声音模式识别,并提出了呼吸和药物作用(RDA)基准套件(https://gitlab.com/vvr/monitoring-medication-adherence/rda-benchmark),用于基准测试和进一步研究。RDA套件包括一组用于音频处理、特征提取和分类程序的工具,并提供了一个数据集,包含呼吸和药物作用的声音。RDA中的分类模型是基于传统的和先进的机器学习和深度网络架构实现的。本研究提供了实施方法的比较评估,探讨了潜在的改进和未来趋势,并讨论了挑战。