AI-powered attacks on Learning with Errors (LWE), an important hard math problem in post-quantum cryptography, rival or outperform "classical" attacks on LWE under certain parameter settings. Despite the promise of this approach, a dearth of accessible data limits AI practitioners' ability to study and improve these attacks. Creating LWE data for AI model training is time- and compute-intensive and requires significant domain expertise. To fill this gap and accelerate AI research on LWE attacks, we propose the TAPAS datasets, a Toolkit for Analysis of Post-quantum cryptography using AI Systems. These datasets cover several LWE settings and can be used off-the-shelf by AI practitioners to prototype new approaches to cracking LWE. This work documents TAPAS dataset creation, establishes attack performance baselines, and lays out directions for future work.
翻译:人工智能驱动的错误学习(LWE)攻击——后量子密码学中一个重要数学难题——在某些参数设置下已能与针对LWE的“经典”攻击相匹敌甚至更优。尽管该方法前景广阔,但可用数据的匮乏限制了人工智能从业者研究和改进这些攻击的能力。为AI模型训练创建LWE数据需要大量时间和计算资源,且需要深厚的领域专业知识。为填补这一空白并加速针对LWE攻击的AI研究,我们提出TAPAS数据集——基于人工智能系统的后量子密码分析工具包。这些数据集涵盖多种LWE参数配置,可供AI从业者直接用于原型化破解LWE的新方法。本文详细记录了TAPAS数据集的构建过程,建立了攻击性能基准线,并规划了未来研究方向。