Generative Adversarial Networks (GAN) have many potential medical imaging applications, including data augmentation, domain adaptation, and model explanation. Due to the limited memory of Graphical Processing Units (GPUs), most current 3D GAN models are trained on low-resolution medical images, these models either cannot scale to high-resolution or are prone to patchy artifacts. In this work, we propose a novel end-to-end GAN architecture that can generate high-resolution 3D images. We achieve this goal by separating training and inference. During training, we adopt a hierarchical structure that simultaneously generates a low-resolution version of the image and a randomly selected sub-volume of the high-resolution image. The hierarchical design has two advantages: First, the memory demand for training on high-resolution images is amortized among subvolumes. Furthermore, anchoring the high-resolution subvolumes to a single low-resolution image ensures anatomical consistency between subvolumes. During inference, our model can directly generate full high-resolution images. We also incorporate an encoder with a similar hierarchical structure into the model to extract features from the images. Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation. We also demonstrate clinical applications of the proposed model in data augmentation, image super-resolution and clinical-relevant feature extraction.
翻译:Adversarial 网络(GAN) 有许多潜在的医学成像应用, 包括数据增强、 域适应和模型解释。 由于图形处理器(GPUs)的记忆有限, 多数目前的 3D GAN 模型在低分辨率医学图像上接受培训, 这些模型不是不能缩到高分辨率, 也不是容易产生偏差的文物。 在这项工作中, 我们提议了一个新型端到端的GAN 结构, 能够生成高分辨率 3D 图像。 我们通过区分培训和推断来实现这一目标。 在培训中, 我们采用一个等级结构, 同时生成低分辨率图像的低分辨率版本, 以及随机选择的高分辨率图像的子容量。 等级设计有两个优点: 首先, 高分辨率图像培训的记忆需求在子卷之间是分解的。 此外, 将高分辨率子目录固定在单一的低分辨率图像上, 保证了子目录之间的解剖度一致性。 在推断中, 我们的模型可以直接生成全高分辨率图像。 我们还将一个具有类似等级结构结构的编码和高分辨率结构结构 用于模型的临床模型, 提取图像的磁性模型。