In multi-channel Wireless Mesh Networks (WMN), each node is able to use multiple non-overlapping frequency channels. Raniwala et al. (MC2R 2004, INFOCOM 2005) propose and study several such architectures in which a computer can have multiple network interface cards. These architectures are modeled as a graph problem named \emph{maximum edge $q$-coloring} and studied in several papers by Feng et. al (TAMC 2007), Adamaszek and Popa (ISAAC 2010, JDA 2016). Later on Larjomaa and Popa (IWOCA 2014, JGAA 2015) define and study an alternative variant, named the \emph{min-max edge $q$-coloring}. The above mentioned graph problems, namely the maximum edge $q$-coloring and the min-max edge $q$-coloring are studied mainly from the theoretical perspective. In this paper, we study the min-max edge 2-coloring problem from a practical perspective. More precisely, we introduce, implement and test four heuristic approximation algorithms for the min-max edge $2$-coloring problem. These algorithms are based on a \emph{Breadth First Search} (BFS)-based heuristic and on \emph{local search} methods like basic \emph{hill climbing}, \emph{simulated annealing} and \emph{tabu search} techniques, respectively. Although several algorithms for particular graph classes were proposed by Larjomaa and Popa (e.g., trees, planar graphs, cliques, bi-cliques, hypergraphs), we design the first algorithms for general graphs. We study and compare the running data for all algorithms on Unit Disk Graphs, as well as some graphs from the DIMACS vertex coloring benchmark dataset.
翻译:在多通道无线网(WMN)中,每个节点都能够使用多个非重叠频率频道。Raniwala 等人(MC2R 2004, INFOCOM 2005) 提议和研究计算机可以拥有多个网络界面卡的几种结构。 这些结构被模拟成一个名为 emph{ 最大边缘 $q$- 彩色的图形问题, 由 Feng 等人( TAM 2007 ) 、 Adamaszek 和 Popa (ISAC 2010, JDA 2016) 的若干论文中研究。 稍后在 Larjomaa 和 Popa ( IWOCA 2014, JGAA 2015) 中, 定义和研究一个替代的变体, 名为 emph{min- max 边缘 $q_ 彩色的 。 上面提到的图形问题, 即最大边缘 $q- 美元 和 min- max 边缘 亮度 。 在本文中, 我们从实际角度研究 的 微数种 基 的 数种搜索和 直数种 基 数字 数据 DNA DNA 。 我们用这些搜索 的 的 基 基 数 的 的 数 数 和直数 基 基 数 数 基 基 的 数 数 数 基 数 。