We consider a theory of quantum thermodynamics with multiple conserved quantities (or charges). To this end, we generalize the seminal results of Sparaciari et al. [PRA 96:052112, 2017] to the case of multiple, in general non-commuting charges, for which we formulate a resource theory of thermodynamics of asymptotically many non-interacting systems. To every state we associate the vector of its expected charge values and its entropy, forming the phase diagram of the system. Our fundamental result is the Asymptotic Equivalence Theorem (AET), which allows us to identify the equivalence classes of states under asymptotic approximately charge-conserving unitaries with the points of the phase diagram. Using the phase diagram of a system and its bath, we analyze the first and the second laws of thermodynamics. In particular, we show that to attain the second law, an asymptotically large bath is necessary. In the case that the bath is composed of several identical copies of the same elementary bath, we quantify exactly how large the bath has to be to permit a specified work transformation of a given system, in terms of the number of copies of the elementary bath systems per work system (bath rate). If the bath is relatively small, we show that the analysis requires an extended phase diagram exhibiting negative entropies. This corresponds to the purely quantum effect that at the end of the process, system and bath are entangled, thus permitting classically impossible transformations. For a large bath, system and bath may be left uncorrelated and we show that the optimal bath rate, as a function of how tightly the second law is attained, can be expressed in terms of the heat capacity of the bath. Our approach solves a problem from earlier investigations about how to store the different charges under optimal work extraction protocols in physically separate batteries.


翻译:我们把量子热力学理论与多节制数量(或电量)相提并论。为此,我们将Sparaciari等人[96:052112,2017年]等量热力学理论推广到多重(一般为非通融)电荷,为此,我们用一个系统及其浴室的阶段性图,分析许多非互换系统的热力学资源理论。对于每一个州,我们将其预期电荷值的矢量及其导体联系起来,形成系统的阶段图。我们的基本结果是AET(AET),这使我们得以将Sparaciari等人(PRA 96:052112,2017年)的基本结果推广到多重(PRA96:05:052112,2017年)的等量性结果推广到(Paracicialal)大约充电量的单位的等等同值。因此,我们利用一个系统的阶段性热力动力学,我们分析的第一阶段和第二个定律,我们展示的是第二层的电流体,一个最深层的洗方法是如何组成一些非正正式的, 我们精确地将一个浴的系统的电算,一个更深层的电算, 显示一个更深层的电算的电压的电路的电算法 显示一个比的电算法的电算的电算法 显示一个比的电算。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员