The successful operation of mobile robots requires them to adapt rapidly to environmental changes. To develop an adaptive decision-making tool for mobile robots, we propose a novel algorithm that combines meta-reinforcement learning (meta-RL) with model predictive control (MPC). Our method employs an off-policy meta-RL algorithm as a baseline to train a policy using transition samples generated by MPC when the robot detects certain events that can be effectively handled by MPC, with its explicit use of robot dynamics. The key idea of our method is to switch between the meta-learned policy and the MPC controller in a randomized and event-triggered fashion to make up for suboptimal MPC actions caused by the limited prediction horizon. During meta-testing, the MPC module is deactivated to significantly reduce computation time in motion control. We further propose an online adaptation scheme that enables the robot to infer and adapt to a new task within a single trajectory. The performance of our method has been demonstrated through simulations using a nonlinear car-like vehicle model with (i) synthetic movements of obstacles, and (ii) real-world pedestrian motion data. The simulation results indicate that our method outperforms other algorithms in terms of learning efficiency and navigation quality.
翻译:移动机器人的成功运行要求它们迅速适应环境变化。 为了开发移动机器人的适应性决策工具, 我们提议了一种新型算法, 将元强化学习(meta- RL)与模型预测控制(MPC)相结合。 我们的方法使用一种脱离政策的元RL算法作为基线, 用于在机器人发现由MPC产生的过渡样品时, 利用该机器人能够以其明确使用机器人动态来有效处理的某些事件来培训政策。 我们方法的关键理念是以一种随机和事件触发的方式在元学习政策与MPC控制器之间转换, 以弥补由有限预测地平面造成的亚优的MPC行动。 在元测试期间, MPC 模块被禁用, 以大幅缩短动作控制中的计算时间。 我们进一步提出一个在线调整计划, 使机器人能够在单一轨迹内推导出和适应新任务。 我们方法的性能通过模拟用非线性汽车模型演示了我们的方法的性能, 包括(i) 障碍的合成动作, 以及(ii) 真实和(ii) 学习过程质量数据中的模拟结果。