In future transportation systems, the charging behavior of electric Autonomous Mobility on Demand (AMoD) fleets, i.e., fleets of electric self-driving cars that service on-demand trip requests, will likely challenge power distribution networks (PDNs), causing overloads or voltage drops. In this paper, we show that these challenges can be significantly attenuated if the PDNs' operational constraints and exogenous loads (e.g., from homes or businesses) are accounted for when operating an electric AMoD fleet. We focus on a system-level perspective, assuming full coordination between the AMoD and the PDN operators. From this single entity perspective, we assess potential coordination benefits. Specifically, we extend previous results on an optimization-based modeling approach for electric AMoD systems to jointly control an electric AMoD fleet and a series of PDNs, and analyze the benefit of coordination under load balancing constraints. For a case study of Orange County, CA, we show that the coordination between the electric AMoD fleet and the PDNs eliminates 99% of the overloads and 50% of the voltage drops that the electric AMoD fleet would cause in an uncoordinated setting. Our results show that coordinating electric AMoD and PDNs can help maintain the reliability of PDNs under added electric AMoD charging load, thus significantly mitigating or deferring the need for PDN capacity upgrades.


翻译:在未来的运输系统中,电动自主需求机动(AMoD)机队的收费行为,即根据需求需要提供服务的电动自行驾驶汽车车队,可能会挑战电力分配网络(PDN),造成超负荷或电压下降。在本文中,我们表明,如果PDN的操作限制和外部负荷(例如来自家庭或企业的)在运行一个AMOD机队时能计算到,这些挑战就可以大大减轻。我们侧重于系统层面的视角,假设AMoD和PDN运营商之间的充分协调。从这一单一实体的视角,我们评估潜在的协调效益。具体地说,我们推广了以前基于优化的AMOD电动系统模型方法的结果,以联合控制AMOD机队和一系列PDN机队,并分析在负负负负平衡限制下进行协调的好处。关于Orange Forn的案例研究,CA,我们显示,AMOD机队与PD机队的升级协调可以大大地消除9 %的电动MMD机队超负荷和50%的升级。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《机器学习数学基础》书册,109页pdf
专知会员服务
74+阅读 · 2021年2月7日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
入门 | 一文概览视频目标分割
机器之心
10+阅读 · 2017年10月6日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
入门 | 一文概览视频目标分割
机器之心
10+阅读 · 2017年10月6日
Top
微信扫码咨询专知VIP会员