Distributed optimization consists of multiple computation nodes working together to minimize a common objective function through local computation iterations and network-constrained communication steps. In the context of robotics, distributed optimization algorithms can enable multi-robot systems to accomplish tasks in the absence of centralized coordination. We present a general framework for applying distributed optimization as a module in a robotics pipeline. We survey several classes of distributed optimization algorithms and assess their practical suitability for multi-robot applications. We further compare the performance of different classes of algorithms in simulations for three prototypical multi-robot problem scenarios. The Consensus Alternating Direction Method of Multipliers (C-ADMM) emerges as a particularly attractive and versatile distributed optimization method for multi-robot systems.
翻译:分布式优化包括多个计算节点,通过本地计算迭代和网络限制的通信步骤,共同尽量减少一个共同的目标功能。在机器人方面,分布式优化算法可以使多机器人系统在没有集中协调的情况下完成任务。我们提出了一个将分布式优化作为机器人管道的一个模块加以应用的一般框架。我们调查了几类分布式优化算法,并评估了这些算法对多机器人应用的实际适用性。我们进一步比较了三种原型多机器人问题情景模拟中不同类别算法的性能。多机器人共识异向方向法(C-ADMM)作为多机器人系统的一种特别有吸引力和多功能的分布式优化方法出现。