Emotion-Cause Pair Extraction (ECPE) is a complex yet popular area in Natural Language Processing due to its importance and potential applications in various domains. In this report , we aim to present our work in ECPE in the domain of online reviews. With a manually annotated dataset, we explore an algorithm to extract emotion cause pairs using a neural network. In addition, we propose a model using previous reference materials and combining emotion-cause pair extraction with research in the domain of emotion-aware word embeddings, where we send these embeddings into a Bi-LSTM layer which gives us the emotionally relevant clauses. With the constraint of a limited dataset, we achieved . The overall scope of our report comprises of a comprehensive literature review, implementation of referenced methods for dataset construction and initial model training, and modifying previous work in ECPE by proposing an improvement to the pipeline, as well as algorithm development and implementation for the specific domain of reviews.
翻译:情感-Cair Explicationon(ECPE)是自然语言处理中一个复杂而受欢迎的领域,因为它的重要性和在各个领域的潜在应用。 在本报告中,我们的目标是介绍我们在经济、社会、文化权利委员会在在线审查领域的工作。 我们用一个人工附加说明的数据集,探索一种算法,利用神经网络提取情感引发的配对。 此外,我们提出了一个模型,使用以前的参考材料,并将情感-原因-对的提取与情感-感知字嵌入领域的研究结合起来,我们将这些嵌入到一个双-LSTM层,给我们带来情感上的相关条款。由于有限的数据集的限制,我们实现了报告的总体范围。我们的报告包括全面的文献审查、数据集构建和初步模型培训的参考方法的实施,以及修改ECPE的先前工作,建议改进管道,以及具体审查领域的算法开发和实施。