We present a scalable 2D Galerkin spectral element method solution to the linearized potential flow radiation problem for wave induced forcing of a floating offshore structure. The pseudo-impulsive formulation of the problem is solved in the time-domain using a Gaussian displacement signal tailored to the discrete resolution. The added mass and damping coefficients are then obtained via Fourier transformation. The spectral element method is used to discretize the spatial fluid domain, whereas the classical explicit 4-stage 4th order Runge-Kutta scheme is employed for the temporal integration. Spectral convergence of the proposed model is established for both affine and curvilinear elements, and the computational effort is shown to scale with $\mathcal{O}(N^p)$, with $N$ begin the total number of grid points and $p \approx 1$. Temporal stability properties, caused by the spatial resolution, are considered to ensure a stable model. The solver is used to compute the hydrodynamic coefficients for several floating bodies and compare against known public benchmark results. The results are showing excellent agreement, ultimately validating the solver and emphasizing the geometrical flexibility and high accuracy and efficiency of the proposed solver strategy. Lastly, an extensive investigation of non-resolved energy from the pseudo-impulse is carried out to characterise the induced spurious oscillations of the free surface quantities leading to a verification of a proposal on how to efficiently and accurately calculate added mass and damping coefficients in pseudo-impulsive solvers.


翻译:我们提出了一个可缩放的 2D Galerkin 光谱元件方法解决方案, 用于对浮动离岸结构的波引力的线性潜在流动辐射问题。 问题的假隐含式配方在时间域内使用根据离散分辨率定制的高斯移位信号解决。 增加的质量系数和阻隔系数随后通过 Fourier 变换获得。 光谱元件方法用于将空间流域分解, 而传统4级明确4级的Runge- Kutta 方案用于时间整合。 将拟议模型的光化组合用于折合和曲线元素, 并用折叠式元素和卷状元素元素组合组合, 计算结果显示在时间范围内使用 $\ mathcal{O} (N ⁇ p) 。 美元开始总网点数和 $p =appsalling amisloral coloral 等值计算结果, 最终显示一个精确度的精确度战略, 和精确度的精确度的精确度的精确度, 以及精确度的精确度的精确度的精确度, 和精确度的精确度的精确度的精确度, 至精确度的精确度的精确度的精确度的精确度的精确度, 至精确度的精确度的精确度的精确度的精确度, 至精确度的精确度的精确度的精确度的精确度的精确度, 至最后的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度, 至测量度的精确度。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月17日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员