Sparse histogram methods can be useful for returning differentially private counts of items in large or infinite histograms, large group-by queries, and more generally, releasing a set of statistics with sufficient item counts. We consider the Gaussian version of the sparse histogram mechanism and study the exact $\epsilon,\delta$ differential privacy guarantees satisfied by this mechanism. We compare these exact $\epsilon,\delta$ parameters to the simpler overestimates used in prior work to quantify the impact of their looser privacy bounds.
翻译:粗略的直方图方法可以有助于以大直方图或无限直方图、大组查询和更笼统地提供一套具有足够项目数量的统计数据。 我们考虑高西亚版本的稀疏直方图机制,并研究这个机制所满足的准确的 $\ epsilon,\ delta$差异隐私保障。 我们将这些精确的 $\ epsilon,\ delta$参数与先前工作中用来量化其较松散隐私界限影响的简单高估值相比较。