Remote sensing hyperspectral and more generally spectral instruments are common tools to decipher surface features in Earth and Planetary science. While linear mixture is the most common approximation for compounds detection (mineral, water, ice, etc...), the transfer of light in surface and atmospheric medium are highly non-linear. The exact simulation of non-linearities can be estimated at very high numerical cost. Here I propose a very simple non-linear form (that includes the regular linear area mixture) of radiative transfer to approximate surface spectral feature. I demonstrate that this analytical form is able to approximate the grain size and intimate mixture dependence of surface features. In addition, the same analytical form can approximate the effect of Martian mineral aerosols. Unfortunately, Earth aerosols are more complex (water droplet, water ice, soot,...) and are not expected to follow the same trend.


翻译:遥感高光谱和更一般的光谱仪器是破译地球和行星科学中表面特征的常见工具。虽然线性混合是化合物检测(矿物、水、冰等)最常用的近似方法,但光在表面和大气介质中的传递是高度非线性的。非线性的精确模拟可能需要极高的数值成本。在这里,我提出了一种非常简单的非线性形式(包括常规线性区域混合)来近似表面光谱特征。我证明这种分析形式能够逼近表面特征的颗粒大小和亲密混合依赖关系。此外,同一个分析形式可以近似火星矿物气溶胶的效应。不幸的是,地球气溶胶更为复杂(水滴、水冰、煤烟等)不太可能遵循相同的趋势。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
浅谈扩散模型的有分类器引导和无分类器引导
PaperWeekly
3+阅读 · 2022年12月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
浅谈扩散模型的有分类器引导和无分类器引导
PaperWeekly
3+阅读 · 2022年12月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
详解GAN的谱归一化(Spectral Normalization)
PaperWeekly
11+阅读 · 2019年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员